Salient Features for Anger Recognition in German and English IVR Portals

نویسندگان

  • Tim Polzehl
  • Alexander Schmitt
  • Florian Metze
چکیده

Anger recognition in speech dialogue systems can help to enhance human computer interaction. In this paper we report on the setup and performance optimization techniques for successful anger classification using acoustic cues. We evaluate the performance of a broad variety of features on both a German and an American English voice portal database which contain “real” speech, i.e. non-acted, continuous speech of narrow-band quality. Starting with a large-scale feature extraction, we determine optimal sets of feature combinations for each language, by applying an Information-Gain based ranking scheme. Analyzing the ranking we notice that a large proportion of the most promising features for both databases are derived from MFCC and loudness. In contrast to this similarity also pitch features proved importance for the English database. We further calculate classification scores for our setups using discriminative training and Support-Vector Machine classification. The developed systems show that anger recognition in both English and 2 Salient Features for Anger Recognition in German and English IVR Portals German language can be processed very similarly reaching comparable

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chapter 1 SALIENT FEATURES FOR ANGER RECOGNITION IN GERMAN AND ENGLISH IVR PORTALS

Anger recognition in speech dialogue systems can help to enhance human computer interaction. In this paper we report on the setup and performance optimization techniques for successful anger classification using acoustic cues. We evaluate the performance of a broad variety of features on both a German and an American English voice portal database which contain “real” speech, i.e. non-acted, con...

متن کامل

Comparing Features for Acoustic Anger Classification in German and English IVR Portals

Acoustic anger detection in voice portals can help to enhance human computer interaction. In this paper we report about the performance of selected acoustic features for anger classification. We evaluate the performance of the features on both a German and an American English dialogue voice portal database which contain “real” speech, i.e. non-acted, continuous speech of narrow-band quality. De...

متن کامل

Recognition of emotions in interactive voice response systems

This paper reports emotion recognition results from speech signals, with particular focus on extracting emotion features from the short utterances typical of Interactive Voice Response (IVR) applications. We focus on distinguishing anger versus neutral speech, which is salient to call center applications. We report on classification of other types of emotions such as sadness, boredom, happy, an...

متن کامل

Approaching Multi-Lingual Emotion Recognition from Speech - On Language Dependency of Acoustic/Prosodic Features for Anger Detection

This paper reports on monoand cross-lingual performance of different acoustic and/or prosodic features. We analyze the way to define an optimal set of features when building a multilingual emotion classification system, i.e. a system that can handle more than a single input language. Due to our findings that cross-lingual emotion recognition suffers from low recognition rates we analyze our fea...

متن کامل

Anger recognition in speech using acoustic and linguistic cues

The present study elaborates on the exploitation of both linguistic and acoustic feature modeling for anger classification. In terms of acoustic modeling we generate statistics from acoustic audio descriptors, e.g. pitch, loudness, spectral characteristics. Ranking our features we see that loudness and MFCC seems most promising for all databases. For the English database also pitch features are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011